Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38715364

RESUMO

Current COVID-19 vaccines face limitations including waning immunity, immune escape by SARS-CoV-2 variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-Receptor Binding Domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared to non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months post-vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T-helper cells and germinal center B cells persisted up to 12 months post-immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional TH1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approx. 2 log10 reduction in lung viral loads compared to non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.

2.
Nat Med ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689059

RESUMO

The paucity of information on longevity of vaccine-induced immune responses and uncertainty of the correlates of protection hinder the development of evidence-based COVID-19 vaccination policies for new birth cohorts. Here, to address these knowledge gaps, we conducted a cohort study of healthy 5-12-year-olds vaccinated with BNT162b2. We serially measured binding and neutralizing antibody titers (nAbs), spike-specific memory B cell (MBC) and spike-reactive T cell responses over 1 year. We found that children mounted antibody, MBC and T cell responses after two doses of BNT162b2, with higher antibody and T cell responses than adults 6 months after vaccination. A booster (third) dose only improved antibody titers without impacting MBC and T cell responses. Among children with hybrid immunity, nAbs and T cell responses were highest in those infected after two vaccine doses. Binding IgG titers, MBC and T cell responses were predictive, with T cells being the most important predictor of protection against symptomatic infection before hybrid immunity; nAbs only correlated with protection after hybrid immunity. The stable MBC and T cell responses over time suggest sustained protection against symptomatic SARS-CoV-2 infection, even when nAbs wane. Booster vaccinations do not confer additional immunological protection to healthy children.

3.
Sci Adv ; 9(30): eade3470, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494438

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Anticorpos Antivirais , Testes de Neutralização , Vacina BNT162 , Anticorpos Monoclonais/química , Microscopia Crioeletrônica , COVID-19/prevenção & controle , SARS-CoV-2
4.
Emerg Microbes Infect ; 12(1): 2208683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37143369

RESUMO

Pteropine orthoreoviruses (PRVs) are an emerging group of fusogenic, bat-borne viruses from the Orthoreovirus genus. Since the isolation of PRV from a patient with acute respiratory tract infections in 2006, the zoonotic potential of PRV has been further highlighted following subsequent isolation of PRV species from patients in Malaysia, Hong Kong and Indonesia. However, the entry mechanism of PRV is currently unknown. In this study, we investigated the role of previously identified mammalian orthoreovirus (MRV) receptors, sialic acid and junctional adhesion molecule-1 for PRV infection. However, none of these receptors played a significant role in PRV infection, suggesting PRV uses a distinct entry receptor from MRV. Given its broad tissue tropism, we hypothesized that PRV may use a receptor that is widely expressed in all cell types, heparan sulphate (HS). Enzymatic removal of cell surface HS by heparinase treatment and genetic ablation of HS biosynthesis genes, SLC35B2, exostosin-1, N-deacetylase/N-sulfotransferase I and beta-1,3-glucuronyltransferase 3, significantly reduced infection with multiple genetically distinct PRV species. Replication kinetic of PRV3M in HS knockout cells revealed that HS plays a crucial role in the early phase of PRV infection. Mechanistic studies demonstrated that HS is an essential host-factor for PRV attachment and internalization into cells. To our knowledge, this is the first report on the use of HS as an attachment receptor by PRVs.


Assuntos
Orthoreovirus de Mamíferos , Orthoreovirus , Infecções por Reoviridae , Animais , Humanos , Orthoreovirus/genética , Indonésia , Malásia , Orthoreovirus de Mamíferos/genética , Mamíferos
5.
Nat Microbiol ; 7(11): 1756-1761, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195753

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/genética , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral , Anticorpos Antivirais , Glicoproteínas de Membrana
7.
Res Sq ; 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233568

RESUMO

The SARS-CoV-2 B.1.1.529 lineage, Omicron variant, was first detected in November 2021 and carries 32 amino acid mutations in the spike protein (15 in RBD) and exhibits significant escape of neutralizing antibodies targeting the parental SARS-CoV-2 virus. Here, we performed a high-resolution multiplex (16-plex) surrogate virus neutralization assay covering all major SARS-CoV-2 variants and pre-emergent ACE2-binding sarbecoviruses against 20 different human serum panels from infected, vaccinated and hybrid immune individuals which had vaccine-breakthrough infections or infection followed by vaccination. Among all sarbecoviruses tested, we observed 1.1 to 4.7-, 2.3 to 10.3- and 0.7 to 33.3-fold reduction in neutralization activities to SARS-CoV-2 Beta, Omicron and SARS-CoV-1, respectively. Among the SARS-CoV-2 related sarbecoviruses, it is found that the genetically more distant bat RaTG13 and pangolin GX-P5L sarbecoviruses had less neutralization escape than Omicron. Our data suggest that the SARS-CoV-2 variants emerged from the changed immune landscape of human populations are more potent in escaping neutralizing antibodies, from infection or vaccination, than pre-emergent sarbecoviruses naturally evolved in animal populations with no or less immune selection pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...